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Nomenclature
A = penetrated area (m?);
a = binding capacity for CO, (kg CO2/m°):;
a’ = inner radius;
B(n-1, N, 0(t)) = the cumulative Binomial distribution;
B(t) = benefits at time t ;
b = a model parameter defined as b = 0/2 where 0 is the scale of fluctuation;
b’ = outer radius;
Cs = CO, concentration at the surface (kg CO,/m®);

= atmospheric CO, concentration (g cm™);

C = the concrete cover (mm);

Co = the design cost;

Cc = the construction cost (materials and labour);

Coa = the cost of quality assurance/control;

Cin = the cost of inspections;

Cpm = the cost of preventative maintenance;

Cem = the cost of corrective maintenance;

Cuse = the user delay cost;

Cr = the cost of durability failure;

Cadapt = defined as the extra costs to take adaptation measures for unit area
($/m?);

Cdamage = the cost of damage including maintenance and repair costs, user delay

and disruption costs, and other direct or indirect losses arising from damage to

infrastructure ($/m?);

Ceo, (1) = the time-dependent increase in atmospheric CO, concentration (107
kg/m?®);

Ce = cement content (kg/m®);

C.0 = C,0 content in cement;
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Cij = the value of the covariance matrix;
COVme = the coefficient of variation of model error;
COVrc = the coefficient of variation obtained directly from the comparison of

the actual and predicted values;

COViest = the coefficient of variation of measurement of the data;

COVspec = the coefficient of variation of the specimen properties;

Crnean = the mean concrete cover (mm);

Chom = the nominal or design cover (mm);

Crepair = direct costs of repair of corrosion damage ($/m?);

Co = construction cost per unit volume;

C(t) = costs at time t;

C1 = external concentration of carbon dioxide (g/m®);

C2 = the concentration of carbon dioxide at the carbonation front in g/m>;

C = a model parameter defined as c= 0/4;

Dco2 = the diffusion coefficient for carbon dioxide through carbonated concrete
in m?/s;

Desf = effective diffusion coefficient at defined compaction, curing and

environmental conditions (m?/s);

D; = CO, diffusion coefficient after one year;

Dcoa(t) = the time-dependent CO; diffusion coefficient;

Dpar = diameter of the steel reinforcing bar (mm);

D = slab depth or beam width;

DH = degree of hydration;

dx and dy = the correlation lengths in the x and y axes, respectively;

d = the correlation lengths defined as d = 0. T

derack(t) = the extent of the concrete surface severe corrosion damage at time t;
E = the activation energy of the diffusion process (40 kJ/mol);
Eet = the effective elastic modulus of concrete in (MPa);

Ec = the elastic modulus of concrete;

E[C] = expected service life costs for a RC bridge
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Esr(T) = the expected cost of repair or rehabilitation of corrosion-induced damage

during service life T;

E[Cm] = the expected cost of maintenance;

E[Cu] = the expected user cost due to maintenance disruptions;

E[CH] = the expected cost of failure during the service life of the bridge;

Ewxv =the N X 1 vector containing the covariance of W(X) with the elements of
W,

Ec(t) = the time-dependent in-situ elastic modulus;

Eer = the effective elastic modulus of concrete;

Edamage(T) = the expected cost of repair or rehabilitation (maintenance) of corrosion-

induced damage during service life T;

Edamage-8au(t) = the expected damage costs for business as usual(existing practice);

E damage-adaptation(t) = the expected damage costs for adaptation measures;

Fr(X) = the cumulative distribution function of R structural resistances;

FV = the future cost;

F'e = the nominal design concrete compressive strength;

Fi = a random variable linking cube/cylinder strength to nominal

compressive strength;

F, = a random variable relating 28-day in-situ strength to cube/cylinder
strength;

f; = concrete tensile (splitting) strength (MPa);

fr = the probability density functions of R structural resistances;

fs = the probability density functions of S structural load effect;

fr(t) = time-dependent change in diffusion coefficient due to changes in
temperature;

fru(t) = time-dependent change in diffusion coefficient due to changes in RH;
fi(t) = time-dependent in-situ concrete splitting tensile strength;

fe(t) = time-dependent in-situ concrete compressive strength;

f = the fluctuation scale;

f:(28) = the 28-day in-situ compressive strength;

7 = the design concrete tensile strength (MPa);

Lizhengli Peng PhD Thesis — The University of Newcastle, Australia



19

fo. . (deraairt) = the multi-dimensional probability distribution of dcrack(t);
GDP = Gross Domestic Product ($ trillion);

G = the limit state function;

gi(X, t) = the limit state function of element j;

Qe = a constant equal to 2.5;

h = equals to 6V2;

Icorr-20 = the corrosion rate at 20 <C in | pAlcm? ;

Icorr = the corrosion current density in | pA/cm?;

Icorr(real) = the corrosion rate of the structure in the field (=100 uA/cmz);
Icorr(exp) = 100 pA/cm? is the accelerated corrosion rate ;

i = the number of inspection;

Icorr(ref) corrosion current density at reference state (A /cm?) and is time-

invariant;
icorr(t) = time-dependent corrosion rate;
K1 = constant parameter which considers the influence of execution on Deg

(e.g. influence of curing);

K2 = constant parameter which considers the influence of the environment on
Des (e.g. realistic moisture history at the concrete surface during use);

K = parameter of temperature impacts on corrosion rate;

Knin = the number of combinations of elements that exceed critical percentage;

Kuban = the increased CO, levels in urban environments;

Ko = the rate of rust production;
kr = a rate of loading correction factor;
Kc = the confinement factor that represents an increase in crack propagation

around external (edge) reinforcing bars due to the lack of concrete confinement;

k = the total number of elements of the concrete surface;

Ksite = factor to account for increased CO5 levels in non-remote environments;

I = the length of beam;

L = the lower triangular matrix of the covariance matrix calculated by a
Cholesky decomposition (or similar);

M = respective molar masses in (kg/mol);
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Mst = the mass of corroded steel depends on the type of corrosion product;
ME(rcrack) = model error of crack propagation model;

Mcao = molar mass of C,0O and equal to 56 g/mol;

Mco, = molar mass of CO, equal to 44 g/mol;

m = a mass of carbon dioxide (Q);

m = the number of elements in the i™ combination;

N = the total number of elements;

Ny = the number of years in the future at which the cost is incurred;

Ne = constant parameter which considers the influence of meso climatic

conditions (e.g. orientation and placing of structure);
Ng = the age factor of CO, diffusion coefficient;
Nm = an age factor of microclimatic conditions which related to the frequency

of wetting-drying cycles;

Ne =the number of elements that exceed critical degradation;

n = the number of damage incidents;

Ps = the probability if durability failure;

Ps.n(t) = the probability of the n™ damage incidence before time t;

RH = relative humidity (%);

R = the gas constant (8.314x10" kd/mol’ K);

reack = the rate of crack propagation (mm/hr);

r = the discount rate;

S = the space interval;

S = the location of the spatial random variable within the random field;
T, = Corrosion initiation, the time from construction completed to the time

when carbon dioxide or chlorides, etc. induced de-passivation of the protective alkaline
film around the reinforcing bar (year);

ti = Crack initiation, the time from corrosion initiation to the time when the
first visible crack of width of approximately 0.05 mm can be observed on the concrete
surface (year);

T(t) = the temperature at time t (C);

Teev = the time to corrosion damage;
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T = the service life of the structure (years);

t = time in service;

to = reference period, e.g. 1 year;

tsev = the time for a crack to propagate from crack initiation to a limit crack width;
Vi 280 Vi, and Ve = the COV of the 28-day in-situ concrete compressive

strength, F1 and F», respectively;

w = the crack width (mm));

w = a vector representing the value of the random field for each of N
elements;

X(s) = the multidimensional random field,;

Xi = the location of the centroid of the element i;

X = the averaging interval,

Xo = the distance from the end of the first element to the start of the second
element;

X1 = the distance from the start of the first element to the start of the second
element;

Xa = the distance from the start of the first element to the end of the second
element;

X3 = the distance from the end of the first element to the end of the second
element;

X = thickness of penetrated concrete layer (m);

Xc(t) = the carbonation depth at time t;

Z = a vector of uncorrelated standard random variables;

OH = a degree of hydration;

AA = the loss of steel cross section in (mm?);

AAg = the loss of steel cross section that is needed for crack initiation in (mmz);
AB = co-benefit of adaptation strategies;

At = the time between inspections;

AP = the probability of damage incident between the (i-1)™ and i" inspections;
APs; = the probability that the extent of damage exceeds the repair threshold

between the (i-1)™ and i" inspections;
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AR(t) = the proportional reduction in damage losses due to an adaptation
measure;

Js = the thickness of corrosion products to generate tensile stresses;

do = the thickness of the pore band around the reinforcing interface (um);

4 = the independent standard normal variates (zero mean, unit variance and

zero correlations);

0 =the scale of fluctuation;

0(t) = the probability of failure of the individual elements at time t;

0i = the eigenvalues of the covariance matrix;

g.and 6, = the scales of fluctuation for a two-dimensional random field in x

and y axes, respectively;

Prust = the density of the corrosion products (kg/m?®);

p(1) =the correlation coefficient between elements;

Po = the common correlation between all elements;

Pij = the value of the correlation function between points i and j;

o = the standard deviation of the random field;

T = the distance between two elements in the random field;

Ty and Ty = the distances between the centroid of element i and j in the x and y axes,

respectively;

v = Poisson’s ratio of concrete;

Wep = the concrete cover cracking parameter;

Qer = the creep coefficient;

0i = the length of the element in a one-dimensional random field or the area

of the element in a two dimension random field.
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Abstract
The long term performance of infrastructure is an important consideration for asset

owners, particularly in relation to reinforced concrete (RC) structures subject to corrosion.
This thesis focuses on management of RC structures subject to carbonation induced
corrosion under a changing climate. A changing climate may lead to increases in
atmospheric CO, concentration, and changes in temperature and relative humidity
(RH), especially in the longer term, will accelerate the deterioration processes and
consequently decline the safety, serviceability and durability of RC infrastructure.
Therefore, modelling the deterioration process of RC structures under a changing climate
and estimating cost effectiveness of climate adaption strategies can provide very useful
information in decision making for the management of RC structures in corrosive

environments.

While there is much research on corrosion-induced deterioration of concrete structures,
there is relatively little research on how deterioration can be affected by a changing
climate. In this thesis, an improved carbonation induced corrosion model is developed by
considering time-dependent atmospheric CO, concentration, local temperature and RH
effects. A new parameter kg is introduced to take account local differences in CO;
concentration based on recorded data from various observation sites around the world.
Future climates may be influenced by various factors which make projections difficult.
Therefore, high and medium emission scenarios (i.e. RCP 8.5 and RCP 4.5), as well as a

reference scenario, are used to cover the full range of possible outcomes.

Many corrosion parameters and concrete properties governing the corrosion process are
uncertain. Moreover, due to the spatial variability of workmanship, and environmental
and other factors, it is recognised that the material and dimensional properties of concrete
structures will not be homogeneous. So, it is necessary to model the spatial variability of
the parameters in order to be able to characterise not only the probability of degradation,
but also the extent of damage. This information is useful in optimising maintenance

strategies. Random field is used in this thesis to model the spatial variability of corrosion
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damage. The method of discretisation and the random field parameters of element size,

scale of fluctuation and correlation function are fully discussed in here.

In addition, a cost-benefit analysis of climate adaptation strategies is developed based on
spatial time-dependent reliability analysis described above. Climate adaptation strategies
such as increasing concrete cover and upgrading concrete strength, as well as a
maintenance strategy are defined. The cost-effectiveness of an adaptation strategy is
measured in terms of Net Present Value (NPV). Both the mean NPV and the probability

of NPV exceeds zero can be calculated to provide useful information for decision makers.

RC beams and slabs for bridges and buildings in two Australian cities and three Chinese
cities are investigated in the thesis. Durability design requirements, climate projections of
specific locations and statistics of real structures’ parameters (such as concrete cover and
concrete compressive strength) of RC structures in Australia and China are considered in
order to make practical predictions. Cost data for adaptation and corrosion damages are
based on local market prices of the two countries. Monte-Carlo simulation is used as the
computational method to do the spatial time-dependent reliability analysis which includes
the time-dependent climate scenarios and deterioration processes, as well as a large
number of random variables and spatial random fields of material properties and
dimensions. Sensitivity analysis is performed in this thesis to estimate the relative
influences of the considered random variables. Break-even analysis is also conducted to
provide a straight forward measure for decision makers to quickly determine if an

adaptation strategy is cost effective or not.

The overall results indicate that the reliability framework is well suited to predict
carbonation induced corrosion damage of RC structures under a changing climate and
assessing the cost-effectiveness of climate adaptation strategies. Moreover, the
framework can easily adapt to updates or adjustments of information. The results and
analysis can greatly assist designers and asset owner or operators in improving and

optimising the management of RC structures in corrosive environments.
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